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The use of fibres to improve the work-of-fracture and strength of brittle matrices has 
gained interest in a number of fields, especially in the cement and plaster industry, and 
also in h igh-temperatu re applications of ceramics and glasses. Here a theoretical analysis 
is presented to account for the enhanced strain-to-failure values of a brittle matrix 
containing microcracks and reinforced with fibres. The theory assumes that the Griffith 
energy criterion for failure applies when a crack is present in the matrix. It predicts the 
stabilizing effect of a unidirectional uniform distribution of fibres which bridge a matrix 
crack by computing the rates of release of strain energy and of absorption energy with 
increasing length of a matrix crack. Published experimental data on the carbon fibre 
reinforced glass system is used to compare the predictions of the theory here with a 
version given by Aveston, Cooper and Kelly. Descriptions of the boundary conditions 
of single and multiple fracture are given. The theory is shown to further indicate the 
possible existence of an upper limit to the fibre volume fraction at which multiple 
fracture occurs, i.e. when the fibres stabilizing the crack cannot support the load. 
Applications of the analysis to the design of composite systems of technological 
importance are suggested. 

1. Introduction 
It has been shown that the incorporation of con- 
tinuous brittle fibres into ceramic and glass 
matrices can produce a composite which has both 
improved strength and toughness. Experiments by 
Sambell e t  aL [1, 2], Phillips et  al. [3] and more 
recently by Prewo and Bacon [4] on the use of 
carbon fibres to reinforce a number of different 
types of glass matrix have clearly demonstrated 
the effectiveness of such materials, e.g. the work- 
of-fracture can be increased from 10 to 103 Jm -2. 
In this type of composite the matrix has a lower 
failure strain than the fibres and this factor brings 
about microcracking in the glass phase at a much 
lower strain than that at which final catastrophic 
fracture occurs. 

An attempt to analyse the effect of a unidirec- 
tional array of fibres on the cracking strain of a 
brittle matrix has been made by Aveston, Cooper 
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and Kelly [5] (ACK theory). The approach taken 
was to compare the change in the potential energy 
of the composite material and loading system 
caused by the presence of a transverse matrix 
crack, with the work-of-fracture of the matrix 
material. Matrix fracture was assumed to occur 
during the application of a tensile load to the 
composite material if the matrix strain exceeded 
its failing strain in the unreinforced condition and 
provided also that there was a decrease in the 
potential energy of the composite specimen and 
the loading system. According to this analysis the 
unreinforced matrix failure strain will be enhanced 
to a value of emue, where, 

1 

\ - ~  ] = ernue, (1) 

where E,, Em and Ee are, respectively, the 

�9 1981 Chapman and Hall Ltd. 1 5 3 3  



Strain 

T 

centlre of 

crack 
Figure 1 Idealized strain distribution around a crack in an unreinforced sheet. 

Young's modulus of fibre, matrix and composite, 
V~ and Vm are the volume fractions of fibre and 
matrix and 7m is the fracture energy of the 
matrix. 

If the value of emu c predicted from Equation 1 
is less than emu, the failing strain of the unrein- 
forced matrix, the fibres are assumed not to 
modify the matrix failure strain. If the fibre 
diameter, 2r, is sufficiently small and ~-, the shear 
strength of the fibre matrix interface, is suf- 
ficiently large, the matrix will fracture at a value 
of emue greater than that for the unreinforced 
material, emu. Thus the theory predicts an 
enhancement of the matrix failing strain if a suf- 
ficient volume fraction of appropriate fibrous 
material is incorporated within it. The above 
argument does not consider the mechanics of 
crack growth and only two conditions are con- 
sidered: the uncracked condition and the situation 
in which a crack has propagated completely across 
the specimen. 

In the analysis described here an alternative 
physical model is considered. Cracks must be pre- 
sent in any brittle matrix and the Griffith energy 
criterion for failure is assumed to control the 
matrix strength. The model is based on a previous 
analysis [6-8]  dealing with the mechanics of 
transverse matrix crack growth in reinforced sys- 
tems containing continuous crack-bridging rein- 
forcing members. It is limited to a consideration of 
a unidirectional uniform distribution of fibres 
which are aligned at right angles to the crack axis. 

3 a  

The fibres are assumed to be circular in section 
and to be bonded frictionally to the matrix, the 
interface having a constant shear strength value. 
A feature of the model is its ability to predict the 
stabilizing effects of fibres on matrix cracks where 
these control the failing strain of the matrix. The 
unreinforced matrix is therefore the end point of a 
continuous relationship which describes the effect 
of an increasing volume fraction of reinforcing 
fibres on unstable crack extension in the matrix. 

The predictions of the analysis of various 
changes in the physical characteristics of the com- 
ponent parts of the composite structure are illus- 
trated and compared with those of the ACK 
theory. In addition the correlation of the analysis 
with experimental behaviour of carbon fibre 
reinforced glass is examined. 

2. The influence of crack bridging fibres on 
the growth of a matrix, crack 

The physical model and analytical procedures used 
to describe the effect of various factors on the 
mechanics of crack growth have been described in 
detail elsewhere [6-8]  and will only be covered in 
outline here. The strain field around a crack in the 
unreinforced matrix is assumed to approximate to 
the situation described in Fig. 1. The strain carried 
by the material in the vicinity of the crack is 
assumed to increase linearly along any line drawn 
in a direction perpendicular to the length of the 
crack from zero at the crack face to the value of 
bulk strain carried by the material at the edge of 
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Figure 2 Assumed strain distributions within a section 
perpendicular to the crack face of a reinforced matrix. 

an elliptical zone drawn around the crack. Strains, 
and associated strain energies, are considered only 
in the direction perpendicular to the crack face. 
The size of the elliptical zone is chosen so that the 
release of strain energy by the elastic relaxation of 
the material within the elliptical zone (calculated 
within the restrictions described above) is numeric- 
ally the same as that calculated by integrating the 
strain field around a crack in an ideal isotropic 
elastic solid. It follows that the major axis of the 
elliptical zone is three times the crack length. 

The strain field is modified by the presence of 
crack-bridging fibres which are assumed to be 
uniformly distributed and arranged perpendicular 
to the crack faces. Stress is transferred between 
the matrix and the fibres via the f ibre-matrix 
interface which is assumed to have a constant 
shear strength value. Fig. 2 shows the strain distri-~ 
bution within the reinforcing fibres and the matrix 
within a section of the ellipitical zone perpendicu- 
lar to the crack face. The slopes of  the lines VQ 
and OQ are the gradients of strain in the fibres and 
matrix and are given respectively by 

and 

def -- 2r 
- - - ,  ( 2 )  

dx E,r 

dera _ 2Vf'r .4.._~_ (3) 
dx EraVra L 3 '  

where ef is the strain carried by a fibre and era is 
the strain carried by the adjacent matrix at any 
arbitrary distance x from the crack face. The 
gradient of strain in the matrix, dem/dx, along the 
section in the absence of the reinforcing fibres is 

e~/L 3, where e~ is the general tensile strain carried 
by the material outside the elliptical zone as a 
consequence of a uniform tensile stress applied at 
right angles to the length of the crack. Since 
changes in strain are assumed to be confined 
within the elliptical zone then the length of the 
fibres extending across the elliptical zone, which 
surrounds the crack, must be the same as their 
length in the absence of a crack. It follows that the 
two areas shown shaded in Fig. 2 must be the same 
since these are proportional to the amounts by 
which different portions of a reinforcing fibre have 
extended and contracted within the elliptical zone. 
This enables the values of eu, e~, Lt ,  L2 and L3, 
illustrated in Fig. 2, to be defined, 

er = e~L3/[Q(P + e~/L3) -2 + L3/er ~" 

e u = LI(P+ Q + e~/L3); 
(4) 

L1 = er(P + e~/L3)-l; 

L2 = L3er/e~, 

where P = 2Vfz/EmVmr and Q = 2r/Err. Also if 
y is the distance from the centre of the crack to 
the segment considered and a is the half-crack 
length then 

L3 = 3(a z _y2)~.  (5) 

The half-crack opening at a distance y from the 
centre of the crack is obtained from the difference 
in integrated strain between the reinforcing fibres 
and the matrix over the distance OL 1 and is given 
by 

U = euL1/2. (6) 

Equation 4 enables the strain field within the 
elliptical zone to be defined. The development of 
the strain field as the length of a matrix crack 
increases is indicated by the sequence (a), (b), (c) 
and (d) in Fig. 3. The same pattern of change in 
the strain field would also be obtained if the crack 
length was fixed and progressive reductions in the 
diameter of  the crack-bridging fibres was con- 
sidered. It is interesting to note that the strain 
carried by the fibres bridging the crack can be 
appreciably greater than the strain carried by the 
fibres elsewhere in the system, hence, a matrix flaw 
can initiate fibre failure in certain circumstances. 

From Equation 4 the strain energy released, 
6WRy, by a parallel-sided segment of composite 
material within the elliptical zone and situated at 
a distance y from the centre of the crack can be 
determined 
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Figure 3 Development of strain field with increasing crack length. 

6WRy [Eee~L3/2 2 3 3 z = --Eee#(La--L2)/6L 3 

-eo4(z2-zo/2- Vmeme r,/6 
- VfE~(e2u + eue~ + el)L1~6] 6y, (7) 

where E e = EmV m + EI V~. 
The total strain energy released as a conse- 

quence of the matrix crack can be computed by 
numerically integrating Equation 7 over the whole 
of the elliptical zone. This has been done by divid- 
ing a quadrant of the ellipse into a number of 
zones of equal width which are summed to give 
the energy released over the entire quadrant (see 
Section 3.1). The strain energy released for incre- 
mental increases in crack length is then obtained 
and the rate of release of strain energy with 
increasing crack length calculated by numerical 
differentiation. 

If a frictional bond is assumed between fibre 
and matrix, work is done against frictional losses 
as the crack extends. This follows because within 
the stress transfer zone near the matrix crack faces 
the reinforcing fibres are elongating elastically 
whilst the matrix surrounding them is relaxing. 

The relative displacement dm x at a distance x 
from the crack face is given by the integrated 
strain difference between the fibre and the matrix 
from the position x to L ~ so that 

dmx = f : '  eu(1 - - x / L 1 ) d x  

= e , ( L 1 / 2 - - x  + x2/2L,).  (8) 

The frictional force acting over a length dx of the 
fibre is given by 27rr'cdx dmx. 

The total work done is obtained by integrating 
this expression from 0 to L 1 and is 

7rrzeuL~/3. (9) 

Since the number of fibres in a section of width 
6y and unit thickness is V~6yfirr 2 the work done 
against frictional forces in this segment of the 
quadrant is 

6WAy = VfreuL~6y/3r. (10) 

Substituting for e u from Equation 4 gives 

6WAy = F~'r6y{P + Q + et~/La}L~/3r. (11) 

The total energy absorbed frictionally is then 
obtained by numerically integrating Equation 11 
over the quadrant of the ellipse and the rate of 
frictional absorption of energy with increasing 
crack length is obtained by numerically differenti- 
ating values obtained for incremental increases in 
crack length. 

Energy is also absorbed in rupturing the matrix 
by the creation of new surfaces and in associated 
energy absorbing mechanisms. This can be 
assumed to have a constant value G c which has to 
be added to the frictional energy loss term to 
arrive at the total work done in propagating a 
matrix crack. 

Hence the rate of release of strain energy and 
the rate of absorption of energy with increasing 
length of a matrix crack length can be calculated 
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for any unidirectionally reinforced fibrous com- 
posite in which the fibres have a higher fairing 
strain than the matrix and bridge a matrix crack 
orthogonally. Unstable growth of the matrix crack 
will occur when the rate of release of strain energy 
with increasing crack length is greater than the rate 
of energy absorption. 

3. A p p l i c a t i o n  o f  the  m o d e l  to  the  f rac ture  
b e h a v i o u r  o f  a carbon  f ib re  re in fo rced  
br i t t l e  m a t r i x  system 

The model predicts that various types of failure 
processes will occur and that these will be influ- 
enced by the physical characteristics of the com- 
ponent parts of the composite structure. This is 
illustrated below. Comparisons are also made 
between the predictions of this model and the one 
previously put forward by Aveston, Cooper and 
Kelly [5]. Pyrex glass unidirectionally reinforced 
with carbon fibres has been used for these calcu- 
lations and the physical properties taken for this 
system are those used by Aveston, Cooper and 
Kelly [5]. The elastic modulus of the pyrex 
matrix, E m, being taken as 70GNm -2, the elastic 
modulus of the carbon reinforcing fibres, Ee, 
being taken as 380GNm -2, the work-of-fracture 
of  the matrix G e (twice the surface energy 7) 
being taken as 8 J m  -2, and the unreinforced 
matrix failing strain, emu, being taken as 0.14%. It 
will be noted that rather different values for these 
properties are given in a later paper by Sambell et  

al. [21. 
The length of the cracks 2a, assumed initially 

to be present in the matrix, are calculated on the 
basis of the Griffith equation 

Ge 2 = rraEm emu (12) 

so that the length, 2a, of the cracks pre-existing 

Absorption rote 

1 segment 

2 segments . . . . . . . . . .  

10 segments - -  

Figure 4 Rates of release and 
absorption of strain energy with 
increasing crack length shown as 
a function of the number of 
parallel segments into which 
the elliptical strain field around 
the matrix crack has been 
divided. (r=3MNm-2, e/3= 
0.28%, V r=50%, 2r=8/~m, 
G e = 8Jm-2, Em= 70GNm -2, 
E~ = 380 GNm-2). 

I I 
0.5 1.0 

in the matrix is 37.2/Jm. These cracks are assumed 
to be bridged transversely by the reinforcing 
carbon fibres, which remain intact. The composite 
strain values, eta, at which composite failure would 
occur by various failure mechanisms have been 
calculated. The effects of fibre volume fraction, 
fibre thickness, f ibre-matrix interfacial shear 
strength, the flaw size (and hence strength of the 
unreinforced matrix) and the effect of significant 
increases in the matrix work of fracture are illus- 
trated. The data presented therefore describe the 
expected behaviour of pyrex glass unidirectionally 
reinforced with carbon fibres and illustrate the 
effects which might be expected, on the basis of 
the theory, by changing various physical param- 
eters in this system. 

3.1. Factors to be considered in 
establishing the physical validity of the 
theoretical model 

In the analysis set out in Section 2 of this paper 
the elliptical zone was assumed to be divided into 
a finite number of parallel segments, each perpen- 
dicular to the length of the crack. The strain 
energy released and absorbed in each of these 
segments is summed over the whole of the ellip- 
tical zone and numerically differentiated for incre- 
ments in crack length to give the computed rate of 
release and absorption of energy with increasing 
crack length. In the case of most of the comput- 
ations the elliptical zone has been divided into ten 
segments. In Fig 4 the elliptical zone has been 
divided into various numbers of segments and the 
strain energy release and absorption rates with 
increasing crack length have been computed for 
one particular system. The results indicated in 
Fig. 4 are typical of other systems. It is apparent 
that the numerical predictions of the analytical 
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Figure 5 Effect of fibre dia- 
meter 2r, on the strain for 
matrix crack extension e e 
against fibre volume fraction. 
(Curve (1) 2r = l~m, curve (2) 
2r=8#m,  curve (3) 2r= 
100#m). Calculations of all 
plots assume r=2MNm-2, 
emu = 0.0014, G e = 8 J m -2, 
E m = 70GNm -2, Ef = 380GN 
m -2. ACK theory indicated by 
lower curve in all cases. 

model change as the number of segments into 
which the elliptical zone is divided is reduced. 
However, above ten segments no significant 
change takes place and it is not until the num- 
ber of segments is reduced to less than about five 
that small differences arise. Thus the model 
appears to be able to predict the rates of release 
and absorption of energy as a function of crack 
length when the crack is bridged by a small num- 
ber of fibres with an accuracy equivalent to that 
associated with crack-bridging by a large number 
of fibres. This point is of some significance in the 
case of the carbon fibre pyrex glass composite 
structure because cracks about 40/~m in length 
will be bridged by about five 8/am diameter 
carbon fibres when these are present at a volume 
fraction of 30% and arranged in a uniform 
hexagonal array. Hence the predictions of the 
theory do not seem likely to be seriously in error, 
from this source, for 8/am diameter carbon fibres 
at volume fractions of 30% and above (see Fig. 5). 
The enhancement of the composite strain pre- 
dicted for fibre volume fractions less than 30% is 
in any case very small so that, even at lower fibre 
volume fractions than 30%, the errors from this 
source again do not seem likely to be significant 
compared with the other approximations used in 
the development of the analysis. 

3.2. Comparison of theoretical models 
In the case of the data presented in Fig. 5, the 
effect of fibre volume fraction on the matrix fail- 
ing strain is shown for three fibre diameters, 1.0, 8 
and 200#m. Also shown in Fig. 5 are the results 
predicted by the ACK analytical model. The latter 
analysis is limited to a consideration of the 

energetics of the formation of a crack which 
extends across the full width of a specimen, 
(Equation 1). The analysis is only relevant when it 
predicts a composite cracking strain greater than 
that of the unreinforced matrix. It is apparent 
from Fig. 5 that for the 8/~m diameter carbon 
fibre pyrex glass system the ACK analysis predicts 
that an enhancement of the matrix failing strain 
will occur for this particular combination of com- 
posite properties only at high fibre volume frac- 
tions, when a lower interfacial shear strength 
value, r, of 2 MNm -2 is assumed. It is interesting 
to note that at very high fibre volume fractions the 
cracking strain of the matrix predicted by the 
ACK analysis approaches the values derived from 
the argument put forward here. 

3.2. 1. Effect o f  fibre diameter 
It is apparent from Fig. 5 that the predictions of 
the two analyses approach each other at very high 
fibre volume fractions for 8/am diameter fibres. 
For 1/am diameter fibres the predictions of the 
two analyses become indistinguishable at fibre 
volume fractions of about 50%. The thinner fibres 
enhance the composite strain at which existing 
matrix cracks become unstable by a greater 
amount than the 8/~m fibres. By contrast fibres 
of much greater diameter (200ttm) have little 
influence on the matrix failing strain according to 
the analysis developed here. For fibres of this 
thickness the ACK analysis does not predict any 
enhancement in the matrix failing strain over the 
whole range of fibre volume fractions and there 
is a significant difference between the predictions 
of the two theories even at very high fibre volume 
fractions. 
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Figure 6 Effect of fibre-matrix 
interfacial shear strength on 
unstable matrix crack extension. 
Calculations of all plots assume 
emu=0.0014, G e = 8 J m  -~, 
E m = 70GNm -2, Ef = 380GN 
m -2 .  

The analysis developed here predicts a con- 
tinuous relationship between the fibre volume 
fraction and the matrix failing strain extending 
over the whole range of fibre volume fractions. As 
discussed above, there is some uncertainty as to 
the validity of the analysis at very low fibre 
volume fractions (except when the fibre diameters 
are very small) since for this condition, it is 
apparent that the basis of the physical argument 
(the presence of a large number of fibres bridging 
the crack) does not apply when the flaw is small 
and the fibres are relatively large and widely 
spread. However, it is apparent that the predicted 
enhancement of the failing strain of the matrix 
for these conditions is very small. Both the ACK 
analysis and that put forward here predict a very 
considerable er~hancement of the matrix failing 
strain when fibres of a very small diameter are 
present at an appreciable volume fraction. 

3.2.2. Effect  o f  changes in interfacial shear 
strength 

In Fig. 6 the effect of increasing the shear strength 
of the frictional interface, ~, on the composite 

strain at which the intrinsic matrix cracks propa- 
gate, is shown as a function of fibre volume frac- 
tion, V~, for a constant fibre diameter of 8/am. 
Taken together with the data for this fibre 
diameter in Fig. 5, this illustrates the increase in 
the strain, e~, which the matrix would be expected 
to support as a consequence of increases in inter- 
facial shear strength. Again for fairly high enhance- 
ment of matrix failing strain the present theory 
and that of ACK predict similar failing strains. 

3.2.3. Effect of varying the matrix flaw 
size 

Fig. 7 shows the predicted effect of increasing the 
half-length, a, of the inherent flaws in the matrix 
to 100 and 2000/am, (with a concomittent reduc- 
tion in the failing strain of the unreinforced 
matrix, since G e is maintained constant at 
8 Jm-2) .  As would be expected, the numerical 
values of strain enhancement with increasing fibre 
volume fractions for a matrix containing intrinsic 
flaws of length 200/am is intermediate between 
the values for 37.2 and 4000/am flaws. The ACK 
theory predicts the same failure strain for all values 
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Figure 7 Effect of fibre volume 
fraction and the inherent matrix 
flaw size on the strain for 
unstable crack growth in the 
matrix. ( E m  = 70GNm -~, Ef = 
380GNm -2, T = 2MNm -2, 
fibre diameter = 8tzm, G c= 
8 Jm-2). (curve 1) a = 18.6/~m, 
emu= 0.0014, (curve 2) a =  
100/~m, emu = 0.0006, (curve 
3) a = 2000/zm, ernu = 0.00004. 
Predictions of ACK theory for 
zero matrix failing strain in 
curve (4). 
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Figure 8 Effect of increasing the 
matrix work of fracture G c on 
the matrix strain for unstable 
crack growth. Curve (A) G e = 
80Jm -2, emu = 0.0044, curve 
(B) G c = 8 J m -2, emu = 
0.0014. Calculations for all 
plots assume E m = 70 MN m -2, 
Ef = 380MNm -~, r = 10MN 
m -s, d=8/~m, a=18.6#m.  
Predictions of ACK theory 
shown by lower curves. 

of  a. Clearly the predictions o f  both models tend 
to converge as a approaches infinity. 

3.2.4. Effect  o f  matrix work o f  fracture 
In Fig. 8 the effect, predicted by the present 
theory, of  increasing the matrix work-of-fracture 
is shown. The intrinsic flaw size a is maintained at 
18.6/zm and the fibre matrix interfacial shear 
strength is taken as 10MNm -2. The failure strain 
of  the unreinforced matrix is, of  course, increased, 
according to Griffith theory, by increasing the 
value of  G e by an order of  magnitude, i.e. 8 to 
8 0 J m  -2. 

For this particular system the relative enhance- 
ment in matrix failure strain, over its unreinforced 
value, at a given fibre volume fraction is consider- 
ably higher at the low G c value. The ACK theory 
and the present theory give similar predictions 
over a wide range of  fibre volume fractions for the 
lower value of  Gc but are only in agreement at 
very high fibre volume fractions for the higher 
G~ value. 

3.2.5. Comparison between the ACK 
theory and the present theory 

It is apparent from Figs 5, 6, 7 and 8, that both 
the ACK theory and the analysis set out here yield 
similar numerical predictions when the failing 
strain of  a brittle matrix is enhanced very con- 
siderably by the presence of  the fibres. Under 
these circumstances it also follows that a long 
crack remains stable at appreciable values of  
eft despite the low work-of-fracture of  the matrix 
itself. For these conditions the strain energy 
released by matrix crack propagation is largely 
absorbed by frictional energy losses at the f ibre-  
matrix interface and by the additional storage of  
strain energy by the crack-bridging fibres. The 
matrix work of  fracture becomes an insignificant 

term in the energy balance relationship. For a 
given composite strain value, e~, the theory 
presented here predicts that the rate of  release of  
strain energy and rate of  absorption of  strain 
energy approach limiting constant values with 
increasing crack length [7]. Hence, the matrix 
strain for unstable crack growth becomes 
insensitive to the absolute length of  the crack 
when the mechanics of  crack growth are primarily 
controlled by the presence of the fibres and fibre 
matrix interactions. The present analysis predicts 
a relatively constant separation between the faces 
of  a long matrix crack [7]. This approximates to 
the situation considered in the ACK theory - a 
parallel-sided crack extending across the full width 
of  the specimen. Hence in a regime in which 
(according to the present theory) the mechanics 
of  crack growth are not significantly affected by 
the matrix work-of-fracture, and hence crack 
length, the physical arguments approximate to 
each other and both yield similar numerical values. 

3 . 3 .  S i n g l e  a n d  m u l t i p l e  f r a c t u r e  c o n d i t i o n s  
So far the only failure criterion considered is the 
general tensile strain carried by the composite and 

t h e  matrix at the point at which existing matrix 
flaws become unstable and propagate. Various 
other failure criteria impose boundary conditions 
on the failure of the composite and need to be 
considered. Some of  the criteria impose cata- 
strophic failure of  the composite by the propag- 
ation of  a local region of  failure (single fracture). 
In other cases complete failure does not occur and 
multiple cracking of  the matrix occurs. The 
criteria can be listed as follows: 

(1) When the peak strain carried by the central 
fibre bridging the matrix crack as the crack 
becomes unstable is less than etu, (the fibre failure 
strain) multiple matrix cracking will occur provid- 
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ing the fibres can support all of the load applied to 
the composite structure. However, as the volume 
fraction of fibres increases, the composite strain, 
e~, at which a given matrix crack will become 
unstable will increase. The strain carried by the 
fibres bridging the crack also increases and is 
higher than the general composite strain, (see 
Fig. 3) and the central crack-bridging fibres may 
reach their failing strain. As a consequence, a 
composite containing a flaw bridged by fibres can 
fail when the composite strain, e~, is less than the 
fibre failing strain. As the fibre volume fraction is 
increased, a point can be reached at which the 
centre fibre bridging the crack reaches its ultimate 
failing strain, e~u, at the same time as the matrix 
crack becomes unstable. Single fracture will then 
occur. This condition thus represents an upper 
limit tbr multiple matrix cracking. Also, if the 
peak strain carried by the central fibre bridging 
the crack reaches efu before the matrix crack 
becomes unstable the composite will again fail 
catastrophically by single fracture thus imposing 
an alternative upper limit of e~ for multiple matrix 
fracture. 

(2) A second upper limit of fibre volume frac- 
tion for multiple matrix cracking can occur for 
the following reason. As the fibre volume fraction 
increases, the elastic strain and load which the 
composite structure can support is increased 
before matrix failure occurs by the propagation of 
existing flaws, i.e. the failing strain of the flawed 
matrix is increased and the stress carried by the 
composite is enhanced. If this increase is great 
enough, unstable fracture of the matrix can 
precipitate failure of the fibres because they may 
no longer be able to support the total load now 
applied to the composite structure. This will occur 
if the increase in the load bearing ability of the 
composite by the suppression of matrix crack 
growth, brought about by the presence of the 
fibres, is greater than the load bearing ability of 
the additional fibres introduced. It thus 
represents an alternative upper limit to the 
strain at which multiple matrix fracture will 
o c c u r .  

(3) If the fibres are present in low volume frac- 
tions and cannot support the total load applied to 
the composite structure after failure of the matrix, 
single fracture will occur. This condition thus 
represents a lower bound for multiple matrix 
cracking and has of course been identified pre- 
viously (see for example [5]). 

Thus, if the failure of the matrix is assumed to 
occur as a consequence of the unstable propa- 
gation of cracks bridged by fibres the analysis 
given here suggests that multiple matrix cracking 
will extend over a range of fibre volume fractions 
and have definite upper and lower bounds, the 
lower bound is unique and has previously been 
identified. The upper bound is set by the 
operation of two alternative mechanisms which 
can precipitate single fracture of the matrix. 
Whichever of these operates at the lower strain 
value will be critical for any particular system. 
Either mechanism may operate at the lower 
strain depending on the particular physical 
characteristics of the composite system con- 
sidered. The onset of single fracture at high 
fibre volume fractions will, according to this 
analysis, take place at a composite strain less 
than the ultimate failing strain of the reinforcing 
fibres. Again the absolute value of this failing 
strain and the fibre volume fraction at which it 
will occur will depend on the particular physical 
characteristics of the system considered. 

It appears that the most important single factor 
governing the fracture behaviour discussed above is 
the diameter of the fibres in relation to the length 
of the inherent matrix cracks. It is apparent from 
Fig. 5 that when the fibre diameters are large they 
enhance the strain at which existing matrix cracks 
become critical by only a very small amount. 
Hence, the load supported by the matrix when the 
existing cracks become critical is not increased 
significantly by the fibres so that the failure 
mechanism discussed under (2) above would not 
be relevant. Also the enhanced strain carried by 
the fibre bridging the centre of the crack would 
not be increased significantly over the general 
strain carried by the composite. Therefore, failure 
by the mechanism described under (1) above 
would not be apparent for composites having these 
characteristics. For these conditions multiple 
matrix cracking will occur up to the highest 
feasible fibre volume fractions. 

The issues discussed above are illustrated in 
Fig. 9. Here the physical parameters are chosen 
primarily to illustrate the failure conditions con- 
sidered but are similar to those in the carbon fibre 
reinforced glass system. The value of r is taken as 
10 MN m-2 and Gc = 20 J m-2. Curve 1 illus- 
trates the increasing matrix strain at which the 
intrinsic matrix flaw length (a = 18.6/lm) becomes 
critical as the fibre volume fraction is increased. 

1541 



4 -  

4-  

t ~  

1- 

. . ~  . . . . . . . . . . . . .  . . .  

I 

I 
f i 

I I 
|  I I I 

I 
v_ i v z I ! L, II t, 

. / " "  

~ 2  ; . ~ . . . . . . . . ~ . .  ~ . v ~ . u  ~ ~ ' ~  ~ ~ ~ 

. . . . .  I " ' ' " 0 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
vf 

Figure 9 Illustrating the change in composite strain, el3, with fibre volume fraction, Vf, at which various failure processes 
occur. (r = 10MNm -2, G e = 20Jm-2). 

Curve 5 represents the limiting condition that 
the load carried by the composite at the indicated 
failing strain of the matrix cannot be supported by 
the fibres alone. The intersection of Curve 5 with 
Curve 1 therefore gives the lower bound for the 
onset of multiple matrix cracking, Vie, since, at 
higher fibre volume fractions, unstable extension 
of the matrix cracks occurs before the total strain 
(and load) applied to the composite exceeds the 
load which can be supported by the fibres. Note 
that in the absence of any matrix strengthening, 
by the inhibition of the growth of matrix cracks, 
matrix failure will occur at emu and the onset of 
multiple matrix cracking will occur at a lower 
value of Vfe, i.e. the fibre volume fraction when 
Curve 5 crosses emu. 

The position of V~ will, of course, depend on 
the physical characteristics of the particular 
composite system. 

Multiple matrix cracking would be expected 
for this system at increasing fibre volume frac- 
tions until Curve 1 again crosses Curve 5 at 
V(e x. The failing strain of the matrix has now 
been increased to such a degree by stabilizing pre- 
existing cracks that the additional load which the 
reinforcing fibres have to support after failure 
of the matrix causes them to fail in turn. Hence, 
V~d represents an upper bound for multiple matrix 
cracking. The strength of the composite will 

increase as indicated by Curve 1 with increasing 
fibre volume fraction beyond VI~. The failure 
process now occurs by single fracture and is 
initiated by the propagation of the matrix crack 
followed by failure of the crack-bridging fibres. 

Curve 4 in Fig. 9 represents the strain carried 
by the composite when the central fibre bridging 
the matrix crack reaches its failing strain. For the 
particular composite system considered this 
condition is not relevant over the multiple matrix 
fracture range because it occurs at a higher compo- 
site strain, eta, than that required for failure 
of the matrix. Composite failure as a conse- 
quence of this mechanism cannot occur until 
Curve4 cuts Curve 1. This will precipitate 
single fracture of the composite at Vfu, a higher 
fibre volume fraction than Vie x the upper limit for 
multiple fracture. Failure will now be initiated by 
the fracture of the central crack-bridging fibre 
which, at higher fibre volume fractions, occurs 
at a lower composite strain than that at which 
imatrix cracks propagate. The strength of the 
composite at fibre volume fractions greater than 
Vm will now be controlled by Curve 4. It will be 
noted that the failing strain of the composite, by 
whatever fracture mechanism, is according to this 
analysis always less than the intrinsic failing strain 
of the fibres. 

The curves shown in Fig. 9 and discussed so far 
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relate the bulk strain carried by composite e~ to 
the volume fraction of reinforcing fibres and set 
limits for various failure sequences. Curve3 
refers specifically to the strain carried by the 
central crack-bridging fibre for values of et3 at 
which the matrix cracks become unstable. If this 
is less than the failing strain of the fibres, e~u, 
composite fracture cannot be ini t iated by fibre 
failure. Note however, as discussed above, fibre 
failure can be caused af ter  matrix fracture and 
Curve 5 defines a boundary condition for this. 
Where Curve 3 rises to the failing strain of the 
fibres efu composite failure will be initiated by 
fibre failure and not by matrix failure. This occurs 
as previously discussed at the fibre volume fraction 

Vfu. 
Curve 2 in Fig. 9 shows the enhanced matrix 

failure strain predicted by the ACK theory for this 
particular system. This theory also predicts a range 
of fibre volume fractions over which multiple 
matrix fracture would be expected and this is 
defined by the range of fibre volume fractions 
within which Curve 2, (indicating the matrix fail- 
ure strain) lies below Curve 5, (indicating the com- 
posite strain below which the reinforcing fibres are 
able to support all of the load applied to the com- 
posite system). Note that this theory also predicts 
an upper limit of fibre volume fraction at which 
multiple matrix fracture is replaced by single frac- 
ture because the fibres cannot support the total 
load following failure of the matrix. 

3.4. Correlation with experimental data 
Experimental data on a number of fibre reinforced 
ceramic composite systems have been reported 
(see for example [ 3 - 5 , 9 , 1 0 ] .  Glass fibre 
reinforced plaster, another example of a brittle 
matrix composite, is in extensive commerical use. 
Most of the systems studied incorporate random 
fibre arrays, but experimental data on unidirec- 
tionally reinforced carbon fibre borosilicate glass 
(pyrex) is available [1-5] .  These studies have 
dealt with a wide range of fibre volume fractions 
and an attempt is made below to compare those 
experimental observations with the predictions of 
the theory outlined above. 

Although experimental data on matrix cracking 
in this composite system is available, specific 
physical composite characteristics are not well 
defined. The interfacial shear strength between 
the carbon fibres and the hot-pressed glass powder 
matrix appears to be developed by the mechanical 

keying of fibre surface irregularities. From 
observations of the lengths of fibres protruding 
from the fracture surfaces Phillips e t  al. [3] 
deduce interfacial shear strength, r, less than 
27MNm -2. A value greater than 4MNm -2 was 
obtained from the observed average crack spacing 
when multiple cracking developed in the matrix 
whilst interlaminar shear stress values between 44 
and 71MNm -2 were measured. Phillips [11] 
deduced values of r ranging from 16.5 to 
35.4MNm -2 and discussed the problems pertain- 
ing to the direct measurement of the fibre-matrix 
interfacial shear strength in this system [12]. The 
effective stress intensity factor for centre-notched 
specimens i.e. the cracks propagating parallel to 
the fibre direction, was also calculated. These cal- 
culations are, however, not directly applicable to 
the analysis presented here since the crack was not 
bridged over its entire length by fibres. Aveston 
et  al. [5] assumed values of r of 55 and 5 MNm -2 
for the carbon fibre pyrex glass system in compar- 
ing the experimental data with theoretical predic- 
tions of matrix cracking. As discussed by Phillips 
et  al. [3] the elastic modulus of the matrix is 
influenced by the degree of porosity in the hot- 
pressed glass powder matrix. This factor may also 
influence the size of matrix flaws present in the 
composite particularly at high fibre volume frac- 
tions where considerable matrix porosity is 
observed. The tensile strength of the hot-pressed 
borosilicate glass matrix has usually been assumed 
to have a value of about 100 MNm -2. The proper- 
ties of the carbon fibres used were known with 
rather greater precision but the distribution of 
fibre flaws in terms of severity and separation 
are unknown. Some degree of fibre misalignment 
is also present and these factors will influence the 
failure processes in the composites to some extent. 
Further data on composite systems composed of 
various types of carbon fibres in a borosilicate 
glass have been reported by Prewo and Bacon [4] 
but numerical data on interfacial shear strengths 
was not reported. 

Carbon fibre reinforced glass systems have been 
tested in flexure either in three-point or four-point 
bending. The load-deformation curve shows a 
change in slope which is ascribed to the develop- 
ment of transverse matrix cracks. The measure- 
ment by this means of the surface strain of the 
composite at which the first matrix crack occurs 
therefore presents major experimental difficulties. 
A further problem arises as a consequence of the 
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variability of fibre distributions and alignments. 
According to the analysis put forward here a 
matrix flaw of a particular size would be expected 
to propagate at a lower composite strain in a 
region of low fibre concentration compared with a 
region containing a high fibre volume fraction. 

Various values of the work of fracture of hot- 
pressed borosilicate glass powder are reported in 
the literature. Aveston, Cooper and Kelly [5] 
assumed a value of Gie = 23'rn of 8 J m -2. Sambell 
etal .  [1] assume a matrix work-of-fracture of 
3 J m -2. T h e  effective work-of-fracture of the 
matrix in the composite will depend on the degree 
of irregularity of the matrix fracture surface, 
which from Sambell et  al. [1] appears to be 
appreciable, and in the degree of localized multiple 
cracking which might be expected as a conse- 
quence of the matrix porosity and the presence of 
fibres. Hence, there is a measure of uncertainty in 
the value to ascribe to the matrix work-of-fracture. 

Appreciable tensile thermal stresses are deve- 
loped in the carbon fibre borosilicate glass com- 
posite system due to the different amounts of 
thermal contraction experienced by the fibres and 
the matrix on cooling to room temperature. This 
in turn will depend upon the viscosity-tempera- 
ture relationship for the matrix and the rate at 
which the sample is cooled to room temperature 
after fabrication. Phillips et  al. [3] take the tem- 
perature at which the glass matrix becomes 
effectively an elastic solid at 500~ above room 
temperature. After cooling to room temperature 
the fibres will be carrying a compressive strain ef 
and the matrix a tensile strain era. On the basis of 
a simple balance of forces between fibres and 
matrix therefore 

E m V r n e  m -[-EfVffff = 0. (13) 
Hence, 

AT 
em s [E~Vf(af  am) ], ( t4)  

where AT is the temperature range (500 ~ C)and 
% and a m are, respectively, the thermal expansion 
coefficients of fibres and the glass matrix. Phillips 
et  al. [3] quote 3.3 x 10 -6e  C -1 and 0.4 x 
l 0  - 6 ~  C -1 for am and %. 

The tensile thermal stresses developed in 
various carbon fibre borosilicate glass matrix sys- 
tems, emth, calculated on the basis of the above 
argument, are shown in Table I. Also shown are 
the strain values, %, at which matrix crack would 
be expected to propagate, in the absence of any 
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thermal pre-stress, from the data given in Fig. 6. 
This assumes two alternative values of r (50 and 
10 MN m-2), a matrix work-of-fracture of 8 J m- 2 
and the presence of intrinsic matrix flaws perpen- 
dicular to the fibres and 37.2/am long. (The ana- 
lytical model used is of course two-dimensional.) 
As a consequence of the thermal stresses the 
composite strain at which matrix cracks propagate 
would be expected to fall as the fibre volume frac- 
tion increases. According to the model the effect 
of the crack-bridging fibres outweighs this effect 
for interfacial shear strengths of 50MNm -2 and 
the composite strength is predicted to increase for 
increasing fibre volume fractions (Table I). For 
composites with interfacial shear strengths of 
10MNm -2 the thermal stress effect is almost 
balanced by the inhibition of crack growth in the 
fibres. For the higher shear stress value the results 
predicted from the theory are in tolerable agree- 
ment with the experimental data with the excep- 
tion of the sample containing a fibre volume frac- 
tion of 0.293. 

Phillips et  al. [3] noted the unusually high 
experimental value of matrix cracking strain for 
this particular specimen. They suggested that 
a maximum cracking strain value could exist 
because the beneficial effect of increasing fibre 
volume fraction could be opposed by the associ- 
ated increasing matrix porosity. However the data 
presented shows substantially constant matrix 
porosity values up to fibre volume fractions of 
50%. Sambell et  al. [1] noted the relatively low 
ultimate flexure strengths of the nominally uni- 
directionally reinforced composites compared 
with the values which would have been expected, 
of V f, from the known initial fibre strengths 
~ 2 0 0 0 M N m  -2. They ascribed the reduced 
strengths to fibre misalignment and damage during 
manufacture. Similar comparatively low flexure 
strengths were observed by Prewo and Bacon 
[4] (see Table I), but the ultimate flexure 
strengths of most of the composites tested 
increase with increasing fibre volume fraction. 
The ratio between the composite ultimate tensile 
strength and the apparent point of deviation in the 
load-elongation curve does not exceed about 0.5 
with the exception of the particular sample having 
a fibre volume fraction of 0.293 (Table I) where 
the ratio is about 0.8. 

The theory of matrix crack instability con- 
sidered here deals with a sheet of composite 
material containing a through crack, subjected to a 
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uniform tensile load in the fibre direction and in 
which the fibres are uniformly distributed. None 
of these assumptions are strictly true for compo- 
sites tested in bending. In particular the fibres in 
many of the samples have highly non-uniform 
distributions. In such circumstances matrix 
cracks would be initiated in regions of low fibre 
concentration and be arrested as the crack tip 
propagated into regions of high fibre concen- 
trations. Phillips e t  al. [3] observed the pre- 
sence of stable matrix cracks of finite length in 
carbon fibre pyrex glass composites. The 
presence of individual cracks would provide a 
convenient means of testing the theory put for- 
ward here. If sufficiently long, the effect of any 
non-uniformity of fibre distribution along the 
length of the crack would be largely eliminated, 
and the crack length and the surface strain, eta, at 
which instability occurs would be measurable 
directly. Fig. 7 illustrates the relationship between 
the length of a matrix crack and the strain at 
which it becomes unstable. Furthermore, the 
analytical model used here could be modified 
quite straightforwardly to deal with any arbitrary 
distribution of fibres along the matrix crack by 
inserting appropriate values of Vf for the separate 
parallel segments into which the elliptical zone 
around the crack is divided in computing the 
energy release rate and energy absorption rate 
during crack extension (see Section 2). 

3.5. Application of the theory to the design 
of composite systems of potential 
technological value 

Composite systems utilizing either a polymeric or 
an ahiminium matrix have been in commerical use 
for some time but have been limited to tempera- 
tures of about 300 ~ C because of the characteris- 
tics of the matrix. As a consequence interest has 
now been focussed on silicate glass and ceramic 
matrix systems as a possible route to the develop- 
ment of composites with higher temperature 
capabilities. Work on silicon carbide reinforced 
glass [9] and alumina fibre reinforced glass [10] 
has recently been published. 

The energy absorbing capability of the com- 
posite can be enhanced over that of the matrix 
alone by two different mechanisms. The first of 
these is associated with multiple matrix cracking. 
This is shown to particular advantage in the carbon 
fibre reinforced glass system [3]. The second 
energy absorbing mechanism is associated with the 
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frictional energy losses occurring as discontinuous 
fibres are extracted from the matrix during 
separation of the crack faces. The experimental 
data shows, and the theory set out in Section 2 
predicts, that large numbers of relatively short 
stable matrix cracks can be formed by the first 
mechanism if the fibres are non-uniformly distri- 
buted. The numerical calculations of the 
mechanics of matrix crack propagation, set out in 
Section 3 above, indicate the conditions under 
which multiple matrix cracking would be expected 
for a uniform fibre distribution. This analysis 
shows that the fibres will not modify significantly 
the mechanics of matrix crack propagation unless 
their diameters are small and their interfacial shear 
strengths fairly high. 

Conversely the second energy absorbing 
mechanism occurring, as fibres are extracted from 
the matrix, becomes more important as the fibre 
diameter is increased and as the interracial shear 
strength value is reduced. Hence it can be 
argued that composite systems containing fibres of 
very different diameters and interfacial shear 
strength values might offer advantages over com- 
posites containing only one type of fibre. The 
small fibres would be expected primarily to 
occupy the spaces between the large fibres and 
hence make possible higher fibre volume fractions 
in the composite and also generate a non-uniform 
distribution of fibres for matrix cracks having 
lengths comparable with the diameters of the large 
fibres. However, the small fibres would be 
effectively uniformly distributed for cracks having 
lengths greater than several large fibre diameters. 
Hence it is postulated that under some loading 
conditions irreversible energy loss would occur 
primarily by the generation of large numbers of 
small stable matrix cracks and under other loading 
conditions by the extraction of the large fibres 
from the matrix. Both types of fibres would, of 
course, reinforce the matrix in the conventional 
way. 
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